
WSDL2RPG – FAQ

FAQ How to Use Dynamic Arrays

Status of this Document

Date: 27.03.2012
Version: 1.6

Question

What do I have to do to use dynamic arrays in order to get around the 64k barrier?

Short Answer

In order to use dynamic arrays you have to set the DIM parameter to *NOMAX when
generating your stub module. The *NOMAX special value is supported by
WSDL2RPG v1.12 and higher.

Answer

Before I go into details you have to understand the terms “Heap Storage”, “Memory
Manager” and “Dynamic Array”.

Heap Storage

A heap is a storage container that provides the memory for dynamic memory
allocation. Whenever an application requests a memory block (e.g. RPG:
%allocate()) it is allocated within a heap.

Usually storage is allocated within the default heap. But it is also possible to create a
“private” heap and allocate memory blocks from there.

Allocated memory blocks must be freed and returned to the system once the memory
is no longer in use (e.g. RPG: deallocate).

All associated memory blocks are automatically freed when a private heap is
discarded (deleted). Whereas memory blocks allocated from the default heap must
be freed one by one because the default heap cannot be deleted.

Memory Manager

The purpose of the WSDL2RPG memory manager is to keep track about the memory
blocks that are dynamically allocated by a particular web service stub module.

It uses a private heap per stub module to fulfil incoming requests for memory
allocation. The heap is associated to the web service module using a unique stub
module ID. The memory manager uses a map to keep track of these key/value pairs.
The key of such a map entry contains the stub module ID and the value is set to the
heap identifier as returned by the “Create Heap” API.

This way it is easy to return all memory blocks of a given stub module to the system
by simply discarding the heap.

Dynamic Array

A dynamic array as provided by WSDL2RPG is an array that dynamically allocates
storage for its elements. This way it does not share the limitations of standard RPG
arrays which are “fixed size” and “64k barrier” and it can hold up to 1.044.473
elements.

Prior to WSDL2RPG v1.15 a dynamic array could store up to 170.000 elements.

Using Dynamic Arrays

The first thing you have to do is to enable your stub modules for dynamic arrays
when you create a new module. Set the ‘DIM’ parameter to the ‘*NOMAX’ special value
when you execute the WSDL2RPG command to let the generator know that you want
to use dynamic arrays. Please do that for the stub module as well as for the test
program. Sample commands:

WSDL2RPG

URL('http://www.oorsprong.org/websamples.countryinfo/CountryInfoService.wso?WSDL')

SERVICE('CountryInfoServiceSoap' ('ListOfCountryNamesByCode'))

SRCFILE(*LIBL/QWSDL2RPG) SRCMBR(WS0004) TYPE(*STUB) DIM(*NOMAX)

WSDL2RPG

URL('http://www.oorsprong.org/websamples.countryinfo/CountryInfoService.wso?WSDL')

SERVICE('CountryInfoServiceSoap' ('ListOfCountryNamesByCode'))

SRCFILE(*LIBL/QWSDL2RPG) SRCMBR(WS000401T) TYPE(*PGM) STUB(WS000401) DIM(*NOMAX)

Now, what happens? When the generator uses dynamic arrays it slightly changes the
structure of array elements:

XML:

<xs:element

name="tCountryCodeAndName"

type="tns:tCountryCodeAndName"

minOccurs="0"

maxOccurs="unbounded"

nillable="true" />

<xs:complexType name="tCountryCodeAndName">

 <xs:sequence>

 <xs:element name="sISOCode" type="xs:string" />

 <xs:element name="sName" type="xs:string" />

 </xs:sequence>

</xs:complexType>

Standard RPG array structure:

D tns_RpgArrayOfTCountryCodeAndName_t...

D DS based(pDummy)

D qualified

D x 10I 0

D item likeds(tns_tCountryCodeAndName_t)
D dim(DIM_A1)

Dynamic array structure:

D tns_RpgArrayOfTCountryCodeAndName_t...

D DS based(pDummy)

D qualified

D hItems like(wsdl_hArray_t)
 * Type of hItems is: tns_tCountryCodeAndName_t

The ‘x’ field is no longer needed, because the dynamic array always knows how
many elements it has. Hence it is dropped for dynamic arrays.

On the other side the meaning of the ‘item’ field has changed. Hence it has been
renamed from ‘item’ to ‘hItems’ to indicate that now it is a handle of a dynamic array.

Please notice the comment right below each array:

Type of hItems is: tns_tCountryCodeAndName_t

The generator added the comment to let you know about the type of the array items.

Usually the handle of the array is used to access the array but you are also allowed
to use a symbolic name.

It is highly recommended not to use symbolic names due to significant performance
degrades when using a large number of arrays. Starting with v1.15 symbolic names
are disabled by default.

The WSDL2RPG runtime service program exports the following procedures:

Array_add Adds a given element to an array.

Array_get Returns the element at the specified

position in the array.

Array_getNumE Returns the number of elements in

the array.

Array_getName Returns the name of the array.

Array_getHandle Returns the handle of the array.

Array_null Returns a NULL array.

Array_isNull Returns cTrue if the specified array

handle is null, else cFalse.

Despite of that the service program also exports the following procedures, these
procedures are not intended to be used by the public:

Array_new Produces a dynamic array.

Array_delete Deletes a dynamic array.

Please use the memory manager in case you need to create or delete a dynamic
array in order to associate the array to your stub module or detach the array from it:

MemoryManager_createArray Produces a dynamic array.

MemoryManager_deleteArray Produces a dynamic array.

Using the memory manager to create an array ensures that its memory gets freed
when the memory manager is terminated.

Last but not least the generator added the next two procedures to your stub module:

StubModule_initializeMemoryManager

StubModule_terminateMemoryManager

The first one is used to initialize the memory manager for a given web service stub
module. At this point a new heap is created and associated to the ID of the stub
module.

The second procedure is used to terminate the memory manager. All memory blocks
used by the dynamic arrays of that particular stub module are returned to the system
by deleting the heap.

Keep in mind that you cannot access any array data after that point!

Linking the Stub Service Program

There is nothing special with creating the stub service program. Just use the
CRTSRVPGM command as described in FAQ “How to Create a Test Program”.

Linking the Test Program

When linking the test program you need to add the following service programs to the
CRTPGM command:

• BASICS1

• WSDL2RPGRT

See also “Linking the test program” in FAQ “How to Create a Test Program”.

Sending and Receiving Dynamic Arrays

Regardless of using dynamic arrays to send or receive data you have to initialize the
memory manager prior calling the web service:

uuid = StubModule_initializeMemoryManager()

Note: The uuid returned by the procedure can later be used to create arrays.

Now you can create arrays, call your web service and process the response data.

Then, at the end of each and everything, do not forget to free resources and
terminate the memory manager:

StubModule_initializeMemoryManager()

Receiving Dynamic Arrays

Receiving dynamic arrays is a bit easier than sending arrays because you do not
need to create arrays. They are automatically produced by the generated stub
module.

Please open example WS000401 and search for “createArray”. You should find the
following statement:

tns_tCountryCodeAndName.hItems =

 MemoryManager_createArray(getOperationUuid:
 %size(emptyItem): 'tCountryCodeAndName');

The first parameter contains the ID of the web service stub module and is used to
associate the array to the WS000401 stub module.

The second parameter is an empty array item. It is used to specify the size of an
array element. A few lines above ‘emptyItem’ is defined like data structure
‘tns_tCountryCodeAndName_t’. Do you remember the comment after the type
definition of ‘tns_RpgArrayOfTCountryCodeAndName_t’?

Type of hItems is: tns_tCountryCodeAndName_t

The third parameter specifies the symbolic name of the array.

The symbolic name of the array can be used instead of the handle to access the
array. You may find this way more comfortable than using a more or less long handle
name. On the other hand using the symbolic name is significant slower than using
the handle for large arrays. Last but not least the symbolic array name must be
unique which sometimes is difficult to achieve.

For example use the following statement to get the number of elements in the array if
you know the name of the array:

Array_getNumE('tCountryCodeAndName')

versus:

Array_getNumE(ListOfCountryNamesByCodeResponse...
 .ListOfCountryNamesByCodeResult...
 .tCountryCodeAndName.hItems)

If you do not know the name of the array just ask the array for its name like this:

tCountryCodeAndName =

Array_getName(ListOfCountryNamesByCodeResponse...
.ListOfCountryNamesByCodeResult...
.tCountryCodeAndName...
.hItems);

And this is how to access a specific element of the array:

D curTCountryCodeAndName_A1...

D DS likeds(

D tns_tCountryCodeAndName_t)
D based(pX_A1)

pX_A1 = Array_get(tCountryCodeAndName: i);

sndPgmMsg('Name: ' + curTCountryCodeAndName_A1.sName);

This method of using a data structure based on a pointer gives “transparent” access
to the element which means that you can even change the data of the element.
Furthermore it is very fast because the data of the element must not be copied.

Use this method if you need a copy of the data for some reasons:

D curTCountryCodeAndName_A1...

D DS likeds(

D tns_tCountryCodeAndName_t)
D inz

Array_get(tCountryCodeAndName: i

 : %addr(curTCountryCodeAndName_A1));

sndPgmMsg('Name: ' + curTCountryCodeAndName_A1.sName);

Sending Dynamic Arrays

You can also use dynamic arrays to send data. In this case you first have to create
an array before you can populate it:

D someArrayItem...

D DS likeds(

D tns_someArrayItem_t)
D inz

someRequestMsg.hItems =

 MemoryManager_createArray(uuid

 : %size(someArrayItem)

 : 'inputArray');

Then add items to the array as shown below:

clear someArrayItem;

someArrayItem.string = 'Hello World';

someArrayItem.integer = 4711;

Array_add('inputArray'

 : %addr(someArrayItem);

Overview

 *
 * Memory Manager UUID, used to allocate and free

 * the memory blocks of the dynamic arrays of the

 * SomePort_someOperation() web service.
D uuid S like(wsdl_uuid_t) inz

 *

 * Item of input array

D arrayItem...

D DS likeds(ns_arrayItem_t)

D inz

*

 * Item of response array

D respItem...

D DS likeds(ns_respItem_t)

D based(pRespItem)

 / free

 // Initialize memory manager prior using dynamic arrays

 uuid = SomeWebServiceStub_initializeMemoryManager();

 // Create and populate arrays

 req.hArray =

 MemoryManager_createArray(

 uuid: %size(arrayItem): 'array');

 clear arrayItem;

 arrayItem.attr1 = 'aValue';

 Array_add('array': %addr(arrayItem));

 // Call the web service

 resp = SomePort_someOperation(req: errMsg);

 // Spin through array items

 arrayResp = Array_getName(resp.return.hItems);

 for i = 1 to Array_getNumE(arrayResp);

 pRespItem = Array_get(arrayResp: i)

 // Do whatever you want with respItem.*

 whatever = respItem.fooBaa;

 endfor;

 // Terminate memory manager and free memory

 SomeWebServiceStub_terminateMemoryManager();

Enabling Symbolic Names

It is highly recommended not to use symbolic names due to significant performance
degrades when using a large number of arrays. Starting with v1.15 symbolic names
are disabled by default.

If you really want to use symbolic names, you need to change the call to
MemoryManager_attachService(). Set the second parameter to ‘cTrue’ to use
symbolic names:

MemoryManager_attachService(uuid: cTrue); // symbolic names enabled

MemoryManager_attachService(uuid: cFalse); // symbolic names disabled

An application that sends an array with 20000 elements with an inner array having 3
elements required 25 minutes to handle the request when using symbolic names.
After having disabled symbolic names the same request now takes 12 seconds!

Avoiding Duplicate Array Names

The following error message indicates duplicate array names:

Array name is not unique: inputArray

Usually it is the test program and not the web service stub that violates the unique
array name rule. Why? Because the stub module calls MemoryManager_createArray()

with parameter 'ensureUniqueName' set to 'cTrue', whereas the generated test

program does not specify that parameter to make sure that your array gets the
specified name. But in certain cases that can be the reason for duplicate array
names.

Luckily there are two options to fix the problem:

a) You do not mind the array name because you want to use the handle

If you do not mind the array name you can just drop it from the parameter list like
that:

MemoryManager_createArray(uuid

 : %size(someArrayItem));

In that case the memory manager uses a “Universally Unique Identifier” (UUID) for
the array name.

b) You want to have unique array names for whatever reasons

If you want to use human readable symbolic names you can add parameter
'ensureUniqueName' to the parameter list like that:

hArray = MemoryManager_createArray(uuid

 : %size(someArrayItem)

 : 'inputArray'

 : cTrue);

Then use Array_getName() to get the real name:

name = Array_getName(hArray);

If the specified array name is not unique, the memory manager adds an underscore
“_” plus an integer ID to make the name unique. This way 'inputArray' may be
changed to 'inputArray_0' or 'inputArray_1' or 'inputArray_n' where “n” is any
integer value.

Your comments are important to me! Any comments sent to me are greatly
appreciated.

thomas.raddatz@tools400.de

